DigitalDan.co.uk - Crib Physics Formulae

DigitalDan
Hit Counter 71

 v = s / t {velocity} = {distance} / {time} F = m . a {force} = {mass} . {acceleration} W = m . g {weight} = {mass} . {gravitational acceleration} v = u + (a . t) {velocity} = {initial velocity} + ({acceleration} . {time}) `v`2 = u2 + (2 . a . s) {final velocity}2 = {initial velocity}2 + (2 . {acceleration} . {distance}) s = (u . t) + (½ . a . t2) {distance} = ({initial velocity} . {time}) + (½ . {acceleration} . {time}2) s = ½ (u + `v`) . t {distance} = ½ ({initial velocity} + {final velocity}) . {time} p = m . v {momentum} = {mass} . {velocity} µ = F / R {coefficient of friction} = {force} / {resistance} µ' = F' / R {coefficient of sliding friction} = {sliding force} / {resistance} µ = tan(θ) {coefficient of friction} = tan({angle}) `T` = F . `r` {torque} = {force} . {radius of curvature} ω = θ / t {angular velocity} = {angle} / {time} T = (2 . π) / ω {period} = (2 . {pi}) / {angular velocity} v = `r` . ω {velocity} = {radius of curvature} . {angular velocity} a = ω2 . `r` {angular acceleration} = {angular velocity}2 . {radius of curvature} tan(θ) = v2 / (g . `r`) tan({angle}) = {velocity}2 / ({gravitational acceleration} . {radius of curvature}) KErot = ½ I . ω2 {rotational kinetic energy} = ½ {moment of inertia} . {angular velocity}2 `p` = I . ω {angular momentum} = {moment of inertia} . {angular velocity} `T` = I . a {torque} = {moment of inertia} . {angular acceleration} ω = ω + a . t {angular velocity} = {initial angular velocity} + {angular acceleration} . {time} ω2 = ω2 + (2 . a . θ) {angular velocity}2 = {initial angular velocity}2 + (2 . {angular acceleration} . {angle}) θ = ω . t + (½ . a . t2) {angle} = {initial angular velocity} . {time} + (½ . {angular acceleration} . {time}2) θ = ½ . (ω + ω) . t {angle} = ½ . ({initial angular velocity} + {angular velocity}) . {time} W = `T` . θ {work} = {torque} . {angle} W = F . s {work} = {force} . {distance} KE = ½ . m . v2 {kinetic energy} = ½ . {mass} . {velocity}2 PE = m . g . h {potential energy} = {mass} . {gravitational acceleration} . {height} v = (2 . g . h)½ {velocity} = (2 . {gravitational acceleration} . {height})½ P = W / t {power} = {work} / {time} P = F . v {power} = {force} . {velocity} v = ±ω . (a - s)½ {velocity} = {plusminus}{angular velocity} . ({angular acceleration} - {distance})½ s = a . cos(ω . t) {distance} = {angular acceleration} . cos({angular velocity} . {time}) s = a . cos( (ω . t) + ε) {distance} = {angular acceleration} . cos( ({angular velocity} . {time}) + {initial phase angle}) T = (2 . π) / ω {period} = (2 . {pi}) / {angular velocity} T = 2 . π . (m/k)½ {period} = 2 . {pi} . ({mass}/{stiffness constant})½ F = (G . m1 . m2) / s2 {force} = ({universal gravitational constant} . {mass}1 . {mass}2) / {distance}2 ve = ( (2 . G . mE) / `rE`)½ {escape velocity} = ( (2 . {universal gravitational constant} . {mass of earth}) / {radius of earth})½ `E` = Ts / Tst {Youngs modulus} = {tensile stress} / {tensile strain} W = (`E` . A . e) / (2 . L) {work} = ({Youngs modulus} . {area} . {extension}) / (2 . {original length}) p . V = `n` . R . θ {pressure} . {volume} = {number of moles} . {gas constant} . {temperature} `n` = c / cmat {refractive index} = {speed of light} / {speed of light in material} `n`1 . sin(θ1) = `n`2 . sin(θ2) {refractive index}1 . sin ({angle}1) = {refractive index}2 . sin ({angle}2) (1 / `f`) = (1 / `f`1) + (1 / `f`1) + ... (1 / {focal length}) = (1 / {focal length}1) + (1 / {focal length}1) + ... f = 1 / T {frequency} = 1 / {period} fB = f1 - f2 {beat frequency} = {frequency}1 - {frequency}2 f = (n / (2 . ls)) . (T / µ)½ {frequency} = ({harmonic number} / (2 . {string length})) . ({period} / {mass per unit length})½ I = Q . t {current} = {charge} . {time} R = V / I {resistance} = {voltage} / {current} R = (ρ . l) / A {resistance} = ({resistivity} . {length}) / {area} G = 1 / R {conductance} = 1 / {resistance} σ = 1 / ρ {conductivity} = 1 / {resistivity} J = I / A {current density} = {current} / {area} E = E1 + E2 + ... {electromotive force} = {electromotive force}1 + {electromotive force}2 + ... Rs = R1 + R1 ... {series resistance} = {resistance}1 + {resistance}1 ... (1/Rp) = (1/R1) + (1/R1) ... (1/{parallel resistance}) = (1/{resistance}1) + (1/{resistance}1) ... P = V . I {power} = {voltage} . {current} P = V2 / R {power} = {voltage}2 / {resistance} P = I2 . R {power} = {current}2 . {resistance} F = (1 / (4 . π . ε0 . εr) ) . ( Q1 . (( Q2 ) / `r`2) {force} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ( {charge}1 . (( {charge}2 ) / {separation}2) E = (1 / (4 . π . ε0 . εr) ) . (Q / `r`2) {electric field strength} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation}2) V = (1 / (4 . π . ε0 . εr) ) . (Q / `r`) {voltage} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation}) W = Q . V {work} = {charge} . {voltage} E = V / `r` {electric field strength} = {voltage} / {separation} C = Q / V {capacitance} = {charge} / {voltage} C = (ε0 . εr . A) / `r` {capacitance} = ({permittivity of free space} . {relative permittivity} . {area}) / {separation} (1 / `Cs`) = (1 / C1) + (1 / C2) + ... (1 / {series capacitance}) = (1 / {capacitance}1) + (1 / {capacitance}2) + ... `Cp` = C1 + C2 ... {parallel capacitance} = {capacitance}1 + {capacitance}2 ... V = V0 . e(-t/(C . R)) {voltage} = {initial voltage} . e(-{time}/({capacitance} . {resistance})) Ψ = A . B . cos(θ) {electric flux} = {area} . {magnetic field strength} . cos({angle}) B = (µ0 . µr . I) / (2 . π . s) {magnetic field strength} = ({permeability of free space} . {relative permeability} . {current}) / (2 . {pi} . {distance}) Bs = (µ0 . µr . N . I {magnetic field strength long solenoid} = ({permeability of free space} . {relative permeability} . {number of turns} . {current} F = B . I . l . sin(θ) {force} = {magnetic field strength} . {current} . {length} . sin({angle}) F = B . Q . v . sin(θ) {force} = {magnetic field strength} . {charge} . {velocity} . sin({angle}) F = (µ0 . µr . I1 . I2 . l) / (2 . π . `r`) {force} = ({permeability of free space} . {relative permeability} . {current}1 . {current}2 . {length}) / (2 . {pi} . {separation}) V = VMAX . sin((f . t) / (2 . π) {voltage} = {maximum voltage} . sin (({frequency} . {time}) / (2 . {pi}) I = Io . sin((f . t) / (2 . π) {current} = {maximum current} . sin (({frequency} . {time}) / (2 . {pi}) VRMS = VMAX / 2½ {RMS voltage} = {maximum voltage} / 2½ IRMS = Io / 2½ {RMS current} = {maximum current} / 2½ `X` = VMAX / Io {reactance} = {maximum voltage} / {maximum current} `X` = VRMS / IRMS {reactance} = {RMS voltage} / {RMS current} f = 1 / (2 . π . (L . C)½) {frequency} = 1 / (2 . {pi} . ({inductance} . {capacitance})½) F = NA . e {Faraday constant} = {Avogadros number} . {electron charge} `E` = h . f {energy} = {Plancks constant} . {frequency} `E` = h . c / λ {energy} = {Plancks constant} . {speed of light} / {wavelength} λ = h / (mr . v) {wavelength} = {Plancks constant} / ({relative mass} . {velocity}) `N` = `N0` . e-λt {number of atoms} = {initial number of atoms} . {e}-{decay constant}{time} T½ = (loge(2)) / λ {halflife} = (loge(2)) / {decay constant} `E` = m . c2 {energy} = {mass} . {speed of light}2 A = π . `r`2 {area} = {pi} . {radius}2 `C` = 2 . π . `r` {circumference} = 2 . {pi} . {radius} A = 4 . π . `r`2 {area} = 4 . {pi} . {radius}2 V = (4 / 3) . π . `r`3 {volume} = (4 / 3) . {pi} . {radius}3 m = mo . ( 1 - ( `v`2 / c2 ) )-½ {mass} = {rest mass} . ( (1 - ( {velocity}2 / {speed of light}2 ) )-½ t = to . ( 1 - ( `v`2 / c2 ) )-½ {static time} = {moving time} . ( (1 - ( {velocity}2 / {speed of light}2 ) )-½